Main results of a search on multiplicity distributions in pp collisions: is anybody afraid of a new class of hard events?

Roberto Ugoccioni Alberto Giovannini

Università di Torino and INFN, Sezione di Torino

XXXIV Int’l Symposium on Multiparticle Dynamics
Sonoma County, California, USA, 31 July 2004

based on
For a general review see: hep-ph/0405251
Outline of this talk

1. The framework: the weighted superposition model
 - Clan structure analysis
2. Extrapolations from GeV to the TeV energy range
 - The picture in full phase-space
 - The picture in pseudo-rapidity intervals
 - High energy densities
3. Summary
The weighted superposition model

The weighted superposition mechanism of two classes of events in high energy collisions explains a series of experimental facts assuming that the multiplicity distribution (MD) P_n for each class of events is described in terms of a Pascal (NB) MD with characteristic parameters \bar{n} and k.

Weighted superposition of soft and semihard components:

$$ P_n = \alpha_{\text{soft}} P_n^{(\text{Pascal})} (\bar{n}_{\text{soft}}, k_{\text{soft}}) + \alpha_{\text{semihard}} P_n^{(\text{Pascal})} (\bar{n}_{\text{semihard}}, k_{\text{semihard}}) $$

$$ \alpha_{\text{soft}} + \alpha_{\text{semihard}} = 1 $$

\bar{n} is the average charged multiplicity

$$ D^2 = \frac{1}{\bar{n}} + \frac{1}{k} $$

D^2 is the variance of the MD

The weighted superposition model (II)

The experimental facts explained are:

A. Shoulder structure in the intermediate multiplicity range.

The weighted superposition model (II)

The experimental facts explained are:

A. Shoulder structure in the intermediate multiplicity range.
B. Quasi oscillatory behaviour of the ratio of factorial cumulants, K_n, to factorial moments, F_n, when plotted as a function of its order n (after an initial sharp decrease towards a negative minimum at $n \approx 5$)

The weighted superposition model (II)

The experimental facts explained are:

A. Shoulder structure in the intermediate multiplicity range.

B. Quasi oscillatory behaviour of the ratio of factorial cumulants, \(K_n \), to factorial moments, \(F_n \), when plotted as a function of its order \(n \) (after an initial sharp decrease towards a negative minimum at \(n \approx 5 \))

C. Energy dependence of the strength of forward-backward multiplicity correlations

The experimental facts explained are:

A. Shoulder structure in the intermediate multiplicity range.

B. Quasi oscillatory behaviour of the ratio of factorial cumulants, K_n, to factorial moments, F_n, when plotted as a function of its order n (after an initial sharp decrease towards a negative minimum at $n \approx 5$)

C. Energy dependence of the strength of forward-backward multiplicity correlations

Relevance of Pascal (NB) regularity for classifying different classes of events
and
its interpretation in terms of clan concept

The Pascal (NB) distribution...

The multiplicity distribution

\[P_n(\bar{n}, k) = \frac{k(k + 1) \cdots (k + n - 1)}{n!} \frac{\bar{n}^n k^k}{(\bar{n} + k)^{n+k}} \]

The generating function:

\[G_{\text{Pascal}}(z; \bar{n}, k) \equiv \sum_{0}^{\infty} z^n P_n(\bar{n}, k) = G_{\text{Poisson}} \left(G_{\text{log}}(z; b); \bar{N} \right) \]

with

\[G_{\text{Poisson}}(z; \bar{N}) = \exp \left[\bar{N} (z - 1) \right] \]
\[G_{\text{log}}(z; b) = \frac{\log(1 - bz)}{\log(1 - b)} \]
\[b = \bar{n}/(\bar{n} + k) \]

\[\bar{N} = k \log(1 + \bar{n}/k) \]
\[\bar{n}_c = \bar{n}/\bar{N} \]
...its interpretation

Clan structure and the two-step mechanism

\[\text{CLAN} = \text{set of particles of common ancestry} \]

- Each clan contains at least one particle (the ancestor)
- Clans are independently produced — they follow a Poisson distribution in \(\bar{N} = k \ln(1 + \bar{n}/k) \)
- Particles in a clan follow a logarithmic distribution in \(\bar{n}_c = \bar{n}/\bar{N} \)
- Correlations among particles are exhausted within each clan

At parton level

\[\text{CLAN} = \text{bremsstrahlung gluon jet} \]

String formation is replaced by parton shower formation.

Extrapolations to the TeV region

We extrapolated to high energy the two components, starting from Sp\bar{p}S results, considering the following:

- **I** - the soft component satisfies KNO scaling
- **II** - three scenarios for the semihard component:
 ① also obeys KNO scaling
 ② k^{-1} grows as $\ln s$ (max violation)
 ③ k^{-1} grows as $k_{\infty} - a/\sqrt{\ln s}$ (QCD-inspired)

Scenario ① is disfavoured by CDF and E735 measurements at Tevatron

The unexpected increase of aggregation

Behaviour of the semihard component from 900 GeV to 14 TeV:
\[\bar{N} \ (900 \ \text{GeV}) – (14 \ \text{TeV}) \quad \bar{n_c} \ (900 \ \text{GeV}) – (14 \ \text{TeV}) \]

\[k_{sh} \sim (\ln s)^{-1} \quad 23 \searrow 11 \quad 2.5 \swarrow 7 \]
strong KNO violation

\[k_{sh} \sim k_{\infty} - a/\sqrt{\ln s} \quad 22 \searrow 18 \quad 2.6 \swarrow 5 \]
QCD-inspired behaviour

From GeV to TeV, \(\bar{N} \) decreases and \(\bar{n_c} \) increases, implying clan aggregation and higher particle population per clan.
Minimum: \(\bar{N} = 1 \Leftrightarrow \bar{n} = k(e^{1/k} - 1) \) and being \(\bar{n} > k \) it implies

\[k < 1 \]

An asymptotic property of the semihard component, or the characteristic property of an effective third class of events to be added to the soft and semihard ones?
Three classes

I class: soft events (no minijets)

\[\bar{N}_{\text{soft}} \text{ large and growing,} \quad \bar{n}_{c,\text{soft}} \text{ quite small} \]

\[P_{n,\text{soft}} \text{ obeys KNO scaling} \quad \Rightarrow k_{\text{soft}} \text{ constant} \]

II class: semihard events (with minijets)

\[\bar{N}_{\text{semihard}} \text{ decreasing,} \quad \bar{n}_{c,\text{semihard}} > \bar{n}_{c,\text{soft}} \]

KNO scaling is violated

\[k_{\text{semihard}} \text{ decreases} \]

III class: \(k_{\text{third}} < 1 \): the benchmark of the new class of events.

At parton level, huge colour exchange from a relatively small number of high vituality ancestors would probably indicate a mechanism harder than in both other components and lead to a situation of high density.
Three classes

I class: soft events (no minijets)
\(\bar{N}_{\text{soft}} \) large and growing, \(\bar{n}_{c,\text{soft}} \)
\(P_{n,\text{soft}} \) obeys KNO scaling \(\Rightarrow k_{\text{soft}} \)

II class: semihard events (with minijets)
\(\bar{N}_{\text{semihard}} \) decreasing, \(\bar{n}_{c,\text{semihard}} > n_{c,\text{soft}} \)
KNO scaling is violated \(k_{\text{semihard}} \) decreases

III class: \(k_{\text{third}} < 1 \): the benchmark of the new class of events.
At parton level, huge colour exchange from a relatively small number of high vituality ancestors would probably indicate a mechanism harder than in both other components and lead to a situation of high density.
Distributions with different k: shape comparison

- log-convex gamma MD ($\bar{n} \gg k$) well approximated for $k \to 0$ by a logarithmic MD
- exponential MD (geometric)
- log-concave Pascal MD

$\frac{n}{\bar{n}}$
Clan parameters

\[\bar{N} \text{ avg number of clans} \]

\[\bar{n}_c \text{ avg num of particles per clan} \]
Clan aggregation and correlations

\(k_{\text{third}} < 1 \) implies:

\[
\frac{\bar{n}_{\text{third}}^2}{k_{\text{third}}} = \int C_2(\eta', \eta'') d\eta' d\eta'' > \frac{\bar{n}_{\text{semihard}}^2}{k_{\text{semihard}}}
\]

- Cumulants depend on \(1/k_{\text{third}} \) and are expected to be also much larger than in the semihard component
- Forward-backward multiplicity correlations

\[
b_{\text{FB,th}} = \frac{2b_{\text{th}}p_{\text{th}}(1 - p_{\text{th}})}{1 - 2b_{\text{th}}p_{\text{th}}(1 - p_{\text{th}})},
\]

\(\bar{N}_{\text{third}} = 1 \iff \) maximum leakage, i.e., \(p_{\text{th}} = 1/2 \); since \(b_{\text{th}} \approx 1 \) then

\(b_{\text{FB,th}} \to 1 \) (i.e., \(b_{\text{FB,th}} \gg b_{\text{FB,sh}} \))
New shape!

shoulder

elbow

superposition of I and II class

shoulder = superposition of I and II class

elbow = superposition of II and III class
New shape!

![Graph showing multiplicity distributions]

- **Shoulder**: superposition of I and II class
- **Elbow**: superposition of II and III class
- Green: comp I
- Blue: comp II
- Red: comp III
Going to rapidity intervals: soft and semi-hard

Extend the FPS scenario in a consistent way in $|\eta| < \eta_c$.

- The weight of each component is the same as in FPS: semi-hard events are defined by the presence of (mini)-jets in the final state. The η_c dependence comes from \bar{n} and k parameters only.

- In FPS it was assumed that each component has an average multiplicity which grows linearly with $\ln \sqrt{s}$; since the width of available phase space also grows linearly with $\ln \sqrt{s}$, the simplest consequence is that the single particle density must show some energy independent plateau around $\eta = 0$ which extends some units in each direction.

$$\bar{n}_i(\eta_c) = 2\bar{n}_{0,i}\eta_c \quad \text{with} \quad \bar{n}_{0,\text{soft}} \approx 2.45, \quad \bar{n}_{0,\text{semi-hard}} \approx 6.4$$

$$\bar{n}_{\text{total}}(\eta_c, \sqrt{s}) = \alpha_{\text{soft}}(\sqrt{s})\bar{n}_{\text{soft}}(\eta_c) + (1 - \alpha_{\text{soft}}(\sqrt{s}))\bar{n}_{\text{semi-hard}}(\eta_c)$$

...dispersion (soft)...

The width of the multiplicity distribution is characterised by the parameter k:

$$
\frac{1}{k} \equiv \frac{D^2}{\bar{n}^2} - \frac{1}{\bar{n}} \equiv \frac{\langle (n - \bar{n})^2 \rangle}{\bar{n}^2} - \frac{1}{\bar{n}} = \frac{\bar{n}^2 - \bar{n}^2 - \bar{n}}{\bar{n}^2}
$$

with the relation

$$
\bar{n}_{\text{total}}^2 \left(1 + \frac{1}{k_{\text{total}}}\right) = \alpha_{\text{soft}} \bar{n}_{\text{soft}}^2 \left(1 + \frac{1}{k_{\text{soft}}}\right) + (1 - \alpha_{\text{soft}}) \bar{n}_{\text{sh}}^2 \left(1 + \frac{1}{k_{\text{sh}}}\right)
$$
...dispersion (semi-hard)

- The soft component is taken to have $1/k$ constant with energy for each η interval, but variable with the width of the interval. In low energy experimental data, $1/k$ is not constant but KNO scaling holds. Consequently, also constant with \sqrt{s} are the clan parameters. \bar{n}, \bar{N} and \bar{n}_c all grow with η_c, while $1/k$ decreases.

- For the semi-hard part we choose to violate KNO scaling by making $1/k_{\text{total}}$ continue to grow with energy as it does up to UA5 energies with a linear behaviour in $\ln \sqrt{s}$. Consequently, the average number of clans is seen to decrease very rapidly with the energy for the semi-hard component, \bar{n}_c is seen to increase with energy; it also increases with η_c, and the increase is faster when the energy is higher.
The third component in $|\eta| < 0.9$

Two extreme behaviours:

(i) the third component is distributed uniformly over the whole of phase space;

(ii) the third component has a very narrow and tall plateau and falls entirely within the interval $|\eta| < 0.9$.

These two extreme scenarios are represented as a band in the following figures.

In the first case, the value of k_{th} has again been determined from the asymptotic behaviour of the average number of clans in the second (semihard) component, where it is a fixed fraction of the same quantity in FPS.

$$P_n = \sum_i \alpha_i(\sqrt{s}) P_n^{\text{NB}}(\bar{n}_i(\sqrt{s}, \eta_c), k_i(\sqrt{s}, \eta_c))$$
The third component in $|\eta| < 0.9$ (II)

At LHC, the elbow structure is clearly visible, the narrow peak at very low n is hidden by the other components shifted to smaller \bar{n}.
Numerical details at LHC

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>\bar{n}</th>
<th>k</th>
<th>\bar{N}</th>
<th>\bar{n}_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soft</td>
<td>41</td>
<td>40</td>
<td>7</td>
<td>13.3</td>
<td>3.0</td>
</tr>
<tr>
<td>semi-hard</td>
<td>57</td>
<td>87</td>
<td>3.7</td>
<td>11.8</td>
<td>7.4</td>
</tr>
<tr>
<td>third</td>
<td>2</td>
<td>460</td>
<td>0.1212</td>
<td>1</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta</td>
<td>< 0.9$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soft</td>
<td>41</td>
<td>4.9</td>
<td>3.4</td>
<td>3.0</td>
<td>1.6</td>
</tr>
<tr>
<td>semi-hard</td>
<td>57</td>
<td>14</td>
<td>2.0</td>
<td>4.2</td>
<td>3.4</td>
</tr>
<tr>
<td>third (i)</td>
<td>2</td>
<td>40</td>
<td>0.056</td>
<td>0.368</td>
<td>109</td>
</tr>
<tr>
<td>third (ii)</td>
<td>2</td>
<td>460</td>
<td>0.1212</td>
<td>1</td>
<td>460</td>
</tr>
</tbody>
</table>

(i) the single clan is uniformly spread over the whole of phase space (37% of the clan is contained within $|\eta| < 0.9$), k_{th} is even much less than 1.
(ii) the single clan is fully contained in $|\eta| < 0.9$, (same characteristic parameters as those seen in FPS, but much higher particle density.)
Energy density?

Bjorken formula for the energy density:

\[\varepsilon = \frac{3}{2} \langle E_T \rangle \left. \frac{dn}{dy} \right|_{y=0} \]

where \(\langle E_T \rangle \) is the average transverse energy per particle, \(V \) the collision volume and \(dn/dy \) the particle density at mid-rapidity.

<table>
<thead>
<tr>
<th>our scenarios</th>
<th>soft</th>
<th>semi-hard</th>
<th>(i) third</th>
<th>(ii)</th>
<th>(i) total</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dn/dy)</td>
<td>2.5</td>
<td>7</td>
<td>20</td>
<td>230</td>
<td>10.8</td>
<td>19.2</td>
</tr>
<tr>
<td>(\langle E_T \rangle) (MeV)</td>
<td>350</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>(\varepsilon) (GeV/fm(^3))</td>
<td>0.4</td>
<td>1.6</td>
<td>4.7</td>
<td>54</td>
<td>2.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Compare with

- AGS – O + Cu – \(\sqrt{s_{NN}} = 5.6 \) GeV – \(\varepsilon \approx 1.7 \) GeV/fm\(^3\)
- RHIC (Phenix) – Au + Au – \(\sqrt{s_{NN}} = 130 \) GeV – \(\varepsilon \approx 4.6 \) GeV/fm\(^3\)
The possibility was explored of events in pp collisions with one (or few) clans, i.e., $k < 1$ with $\bar{n} \gg 1$.

It implies very few high-virtuality initial partons (bremsstrahlung gluon jets) developing high partonic densities and energy densities with large colour exchanges.

Measurable signatures were found in the high multiplicity tail, very strong long-range correlations, small size of the BEC region and, conceivably, reduced increase of the number of jets.