Fragmentation @ LEP

Klaus Hamacher
Bergische Universität Wuppertal & DELPHI Collaboration

Outline

- Energy dependence of the charged hadron multiplicity and of the momentum spectra (ADLO)
- Gluon fragmentation function from 3 jet events (O)
- Colour coherence in 3 jet events (D)
- The multiplicity in 3 jet events, of gluon-jets, and gluon to quark ratios (D)
- Summary
The Charged Multiplicity

Multiplicity increase in $e^+e^- \rightarrow q\bar{q}$ due to coherent gluon bremsstrahlung off quarks

$$\left| \begin{array}{c} 0000 \end{array} \right| \propto C_F \cdot \alpha_s$$

Consistent description of the energy dependence of the multiplicity by:

- Fragmentation models
- MLLA (+ LPHD: $\#_{\text{hadrons}} \propto \#_{\text{gluons}}$)

$$\langle N_{ch} \rangle = K_0 \cdot \alpha_s(E_{cm})^{C_1} \cdot e^{C_2 \sqrt{\alpha_s(E_{cm})}}$$

- higher order (3NLO) predictions.

Dependence on flavour composition small but visible
Momentum Spectra – Scaling Violations

Scaling violations clearly observed in comparison of \(\sim 200\text{GeV} \) and \(Z \) data.

Gluon radiation →
- depletion of FF at high \(x \)
- multiplicity increase at small \(x \)

Data well described by Monte Carlo’s

Scaling violations underestimated by FF parameterisations (GDLAP based)
Momentum Spectra – Small x

Colour coherence limits gluon emission at small x / large

$$\xi = -\ln x = -\ln \frac{2E_h}{E_{cm}}$$

Predicted by MLLA “limiting spectrum”

Coherence \rightarrow change of peak position

$$\xi^*(E) \sim \sqrt{\log E}$$

slower than expected from phase space

$$\xi^*(E) \sim \log E$$

Klaus Hamacher, Fragmentation @ LEP: Gluon Fragmentation Function
Comparing Gluons and Quarks in $e^+e^- 3$ Jet Events

- assign partons ↔ jets at tree level
- identify quarks using E-ordering and displaced vertices (heavy q’s)
- determine parton kinematics from event topology
- unfold light-, b-quark, g-contribution by inverting purity matrix
- dynamical studies require evolution scales for jets → transverse momentum like scales:
 \[\kappa = Q = E_{jet} \cdot \sin \frac{\theta_{ij}}{2} \left(\equiv \sqrt{s} \right) \]

- assignment of particles to jets requires jet algorithms → ambiguities

These can be avoided/minimised by
- analysing only 3-jet event multiplicity (DO*)
- use fully symmetric situation needs boost algorithm (O)
- use recoiling gluons (O)
- analysing fast hadrons only (Fragmentation Functions) (DO*)
Gluon and Quark Fragm. Funct. in 3 Jet Events

- OPAL: new Frag. Func. analysis for incl., udsc, b and gluon
 - inclusive events → quark FF’s
 - jets of 3 jet events → quark and gluon FF’s

- Z and high E data combined, cover E_{CM} equivalent from:
 - quarks: 10...210 GeV
 - gluons: 10...100 GeV

- in 3 jet events use scale suggested by angular ordering
 $$\kappa = Q = E_{jet} \cdot \sin \frac{\theta_{ij}}{2}$$

- inclusive and 3-jet results agree well for quarks!

- available FF parameterisations reasonably describe quark data.
Gluon and Quark Fraggm. Funct. in 3 Jet Events

- New gluon results in agreement with previous results:
 - OPAL’s “inclusive” and “boosted” analysis
 - similar DELPHI 3 jet analysis

- Extends available kinematic range

- Parameterisations describe gluon data less well

- Energy slope at high x stronger than expected (both OPAL and DELPHI)
Check for biases of 3 jet analysis

- Compare 3 jet results to inclusive $q\bar{q}$ or gg events in MC
 - agreement OK for quarks
 - sizable difference for gluons at high x small E

OPAL

Pythia6.1 Herwig 6.2
three-jet ev.
inclusive ev.
\(\chi \)

\[
\frac{1}{N_{jet}} \frac{dN_{ch}}{dx_E} \quad \text{scale [GeV]}
\]

- WHY? wrong scales, mass effects or experimental?
- OPAL’s “boost” analysis sees similar bias
- It's an experimental effect!
 Data not unfolded down to parton level
 all analyses assume $E_{jet} = E_{parton}$

But: full unfolding required
 \rightarrow for exact definition of $x = E_{hadron}/E_{parton}$

Common problem of all 3 jet analyses!

- In practice only affects high x gluon FF
- Requires improvement of exptl. procedures!
 Still feasible for LEP experiments?
Coherent Particle Production at Large Angles

- Soft gluons at large angles:
 Large wave-length \rightarrow small resolution \rightarrow coherent emission
 Effective colour-charge depends on event topology

- Compare gluon radiation \perp to $q\bar{q}g$ plane $\leftrightarrow \perp$ to $q\bar{q}$ axis.

\[
\frac{N_{\perp}^{q\bar{q}g}}{N_{\perp}^{qq}} = \frac{C_A}{C_F} \cdot r_t = \frac{C_A}{C_F} \cdot \frac{1}{4} \left[\frac{1}{N_C^2} \right] \quad (i \cdot j) = 2 \sin^2 \frac{\vartheta_{ij}}{2}
\]

Ratio directly proportional to C_A/C_F in LO. No corrections!

Destructive gluon-interference term $\propto 1/N_C^2$

- Experimentally identify partons with k_t-jets (at fixed y_{cut}):
 defines 2 and 3-jet events, excludes ≥ 4-jet events \leftrightarrow LO

 Compare multiplicity \perp to 3-jet plane to the one \perp 2-jet axis

Khoze, Ochs, Lupia
The Destructive Interference Term $\propto 1/N_C^2$

- Solid line: complete r_t, dashed line: without $1/N_C^2$-term

- Data only described with interference
 Fit amplitude k of $1/N_C^2$-term:

 - general topologies:
 $$k = 1.39 \pm 0.05_{\text{stat.}} \pm 0.28_{\text{sys.}}$$
 - symmetric topologies:
 $$k = 1.30 \pm 0.06_{\text{stat.}} \pm 0.33_{\text{sys.}}$$

 Syst. error from variation of y_{cut}, θ_{cone} and cluster algorithms

- Compatible with $k = 1$
 $k = 0$ excluded with $> 95\% CL$.

New clear observation of colour coherence!
The Connection to C_A/C_F

- Expect homogenous linear relation

$$\frac{N_3}{N_2} = r_t \cdot \frac{C_A}{C_F} = r_t \cdot \text{slope}$$

- Data incl. stat. and syst. errors.
- Measured slope from fit:

 general topologies:
 $$2.182 \pm 0.009_{\text{(stat.)}} \pm 0.055_{\text{(sys.)}}$$

 symm. topologies:
 $$2.205 \pm 0.006_{\text{(stat.)}} \pm 0.073_{\text{(sys.)}}$$

Amazingly good agreement with expectation

slope $= C_A/C_F = 2.25$
Momentum-Distribution as Function of r_t

- Use r_t as single scale
- Momentum distributions scale for $p \lesssim 1\text{GeV}$

 Right: renormalised to average/theo. expectation

- Pert. expectation fulfilled for very low energy hadrons \rightarrow

 Local Parton Hadron Duality

Klaus Hamacher, Fragmentation @ LEP: Coherent Soft Particles
ISMD 2004, Sonoma Univ., 28.7 – 1.8 2004 12
Topology Dependence of 3 Jet Event Multiplicity

Prediction accounts for coherence effects by choice of scales

\[N_{q\bar{q}g}(L_{q\bar{q}}, \kappa_{Lu}, \kappa_{Le}) = N_{q\bar{q}}(L_{q\bar{q}}, \kappa_{Lu}) + \frac{1}{2} N_{gg}(\kappa_{Le}) \] \hspace{1cm} (A)

\[N_{q\bar{q}g}(L_{q\bar{q}}, \kappa_{Lu}, \kappa_{Lu}) = N_{q\bar{q}}(L, \kappa_{Lu}) + \frac{1}{2} N_{gg}(\kappa_{Lu}) \] \hspace{1cm} (B)

with \[L = \ln \left(\frac{s}{\Lambda^2} \right), \quad L_{q\bar{q}} = \ln \left(\frac{s_{q\bar{q}}}{\Lambda^2} \right), \]

\[\kappa_{Lu} = \ln \left(\frac{s_{gg}s_{qg}}{s_{q\bar{q}}\Lambda^2} \right), \quad \kappa_{Le} = \ln \left(\frac{s_{gg}s_{qg}}{s_{q\bar{q}}\Lambda^2} \right) \]

Division of multiplicity in \(q\bar{q} \) and gluon part is arbitrary

\[\rightarrow \text{differing definitions of gluon multiplicity} \leftrightarrow \text{differing scales} \]

The phase space of the \(q\bar{q} \)-pair is restricted by the gluon jet \(\rightarrow \text{requires correction} \)
Topological Dependence of 3 Jet Event Multiplicity

- In the Dipole Model, energy slopes of gg and $q\bar{q}$ systems are related by:

$$\frac{dN_{gg}(L')}{{dL'}} \bigg|_{L'=L+c_g-c_q} = \frac{C_A}{C_F} \left(1 - \frac{\alpha_0 c_r}{L} \right) \frac{d}{dL} N_{q\bar{q}}(L)$$

- $N_{q\bar{q}}(E_{cm})$ measured by various e^+e^--experiments
- Solution leaves constant of integration free
 - To be determined from a single measurement of N_{gg}
 - Take CLEO-data from $\chi_b'(J=2) \rightarrow gg$ decay at $E_{cm} = 9.9132$GeV

Analysis:

- Select 3 jet events without cut on y_{cut} (AoD, Cambridge, Durham, PHYJET)
- Compare general and symmetric topologies
- Compare $udscb$ and $udsc$ events \rightarrow constant offset $N_0 \sim 0.6$ due to b-events
- Compare solutions Eden (A) and (B)
- Leave N_0 free \rightarrow use slope for measurement of C_A/C_F
The 3 Jet Multiplicity

- Compare $udsc$ (○) and $udscb$ (●) data
- Eden A ———
 - Very good agreement for symmetric and general topologies
- Eden B - - -
 - Multiplicity overestimated by ~ 0.6
 - Slope too high
 - χ^2 unacceptable in global fit
- Solution Eden B is incompatible with DELPHI data!
- Further DELPHI analysis bases only on Eden A
- OPAL used Eden B (sym. events only)
Is N_0 Constant?

The Connection to δ_{bl}

- No topology dependence of the multiplicity difference δ_{bl} of $udscb$ and $uds(c)$ events is observed.

- Consistent with:
 - previous measurements of δ_{bl}
 - QCD expectation.

- Probably a new precise measurement of δ_{bl} at reduced C.M.S. energy.

Klaus Hamacher, Fragmentation @ LEP: Multiplicity of 3 Jet Events

ISMD 2004, Sonoma Univ., 28.7 – 1.8 2004 16
Result for C_A/C_F

- We want C_A/C_F from slope w.r.t. angles: $\rightarrow N_0$ varied freely!
- Experimentally advantageous:
 \rightarrow insensitive to normalisation
 \rightarrow no b-tagging systematics

\[
\frac{C_A}{C_F} = 2.261 \pm 0.014_{\text{stat.}} \pm 0.036_{\text{exp.}}
\]
\[
\pm 0.052_{\text{theo.}} \pm 0.041_{\text{clus.}}
\]
- Most precise measurement ($\sim 3\%$)
- Fixes QCD group structure to SU(3) together with measurements of β-function, 4 jet \angle-distributions
Energy dependence of the Gluon Multiplicity N_{gg}

- Determine Gluon contribution:

$$N_{gg}(\kappa_{Le}) = 2 \cdot (N_{q\bar{q}}(\theta_1) - N_{q\bar{q}}(L_{q\bar{q}}, \kappa_{Lu}) - N_0)$$

- Agreement between:
 - general & symmetric topologies
 - experiments (except similar OPAL anal.)
 - data and Eden prediction

- Gluon measurements start to compete with quark data

- N_{gg}: E-slope \sim twice that of $N_{q\bar{q}}$
 \rightarrow illustrates colour factor ratio
Ratio of the Multiplicities r and the Slopes $r^{(1)}$

- r:
 - Large differences between LO, NLO, 3NLO, numeric predictions
 - Data only described by Eden (using experimental input)
 - Non-pert. effects are important!

- $r^{(1)}$:
 - Direct measurement of the linear slopes
 - Difference to C_A/C_F smaller
 - 3NLO & Eden pred. similar in agreement with data
 - Non-pert. effects less important
 - Precision of data does not allow to measure 2’nd derivative $r^{(2)}$
Comparing Ratios r, $r^{(1)}$, \ldots $r^{(2)}$?

- Fit of 3NLO-prediction of $N_{q\bar{q}}$ and N_{gg} to data

- Good description of data with $\Lambda_q \neq \Lambda_g$

- r, $r^{(1)}$ and $r^{(2)}$ can be calculated

- But:
 Determination of $r^{(2)}$
 based on used parametrisation
 \(\rightarrow\) correlation with the multiplicity measurement

Klaus Hamacher, Fragmentation @ LEP: Multiplicity of 3 Jet Events
Summary

- Multiplicity and fragmentation functions of quarks & gluons were measured over a wide energy range @ LEP
 - observed scaling violations (q & g), coherence effects ξ^*
 - gluon measurements to be improved (?)

- New measurement of colour coherence from soft particles in 3 jet events
 - destructive interference term observed
 - amazing agreement with LO prediction \leftrightarrow LPHD

- Consistent measurements of the energy dependence of the gluon multiplicity
 - gluon slope \sim twice quark slope
 - new precise measurement of C_A/C_F
 - QCD gauge group is fixed by measurement of hadronic properties: gluon/quark multiplicity, β-function
Gluon and Quark Fragm. Funct. in 3 Jet Events

Observed discrepancy is due to incomplete experimental unfolding!

- Jet energy reconstructed from observed hadrons.
- Assume \(E_{\text{jet}} = E_{\text{parton}} \)
- But smearing due to hadronisation \(\angle \)-resolution roughly 3\(^\circ\). \(\rightarrow \) smearing of \(E_{\text{parton}} \propto 1/E \)
 \(\rightarrow \) smearing of FF’s; \(\propto \) FF fall-off
 \(\Rightarrow \) strong overestimate of gluon FF at small \(E \) and high \(x \)
- The principle problem is there for all 3 jet analyses!
- Needs improvement of exptl. procedures!
 Still possible?

Klaus Hamacher, Fragmentation @ LEP: Additional Plots
Detailled Comparison to Opal

N_{\text{ch.}} e^+ e^-

- OPAL (uds)
- DELPHI (udsc)
- Eden A
- Param.
- without hadr. corr

\(\sqrt{s} \) [GeV]

- DELPHI 3Jet
- OPAL 3Jet
- OPAL Hemis.
- OPAL boosted
- CLEO
- MLLA-prediction

\(\theta_1[^{\circ}] \)

- qq events
 - ARGUS
 - Corrected data (c\&b quark contributions removed)
 - JADE
 - TASSO
 - HRS
 - AMY
 - LEP-averaged
 - DELPHI Param.

- 3NLO fit
- Jetset 7.4 uds cb events
- Jetset 7.4 uds events

Klaus Hamacher, Fragmentation @ LEP: Additional Plots
The C_A/C_F Fit to the 3 Jet Multiplicity

Klaus Hamacher, Fragmentation @ LEP: Additional Plots