CMS Heavy Ion Physics

Pablo Yepes
Rice University

- Hadronic Collisions
 - Quarkonia Production
 - Jet Collisions
- Coherent Interactions
Why HI at LHC
Jurgen Shukraft, Quark Matter 2001

Pb+Pb, central collisions (b=0)

<table>
<thead>
<tr>
<th></th>
<th>SPS</th>
<th>RHC</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>dN_{ch}/dy</td>
<td>500</td>
<td>800</td>
<td>3000</td>
</tr>
<tr>
<td>$V_f(Km^3)$</td>
<td>1</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>$\varepsilon (GeV/Km^3)$</td>
<td>2.5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>$\tau_{QGP} (fm/c)$</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>$\tau_0 (fm/c)$</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Bigger
Hotter
Longer

Before

After

Pb+Pb, central collisions (b=0)
J/ψ Melting

NA50 Collaboration, CERN

L(fm): Average distance travel by the J/ψ inside nuclear matter.

Pablo Yepes, Rice U
Quarkonia Acceptance in CMS μ–Chambers

ψ at CMS
- CMS: ψ mainly $p_T > 5$ GeV with barrel, due to μ cutoff.
- ALICE: $\eta > 2.5$ with μ
- ATLAS (if they do HI) lower acceptance due to higher μ p_T cutoff.

Upsilon at CMS
- Full Detector
- Barrel

ψ acceptance:
- 10%

Υ acceptance:
- 20%

May 19, 2001
Pablo Yepes, Rice U
Quarkonia Reconstruction

- **Essential sub-detectors:**
 - Tracking devices
 - Muon system

- **Pessimistic assumptions for background estimates:**
 - $dN_{ch}/dy=8000$ (most generators < 5500)
 - $<p_t>_{\pi}=0.48$ GeV/c (HIJING 0.39 GeV/c)
 - $<p_t>_{K}=0.67$ GeV/c

- **Special Heavy Ion Tracking Algorithm**
 - Significant Muon background from π and K decays
J/Ψ Signal

1 month running at top Luminosity:
J/Ψ's detected and reconstructed in the Barrel:

Pb-Pb

- **# events/25 MeV/c²**
- **Ψ/cont. = 1.0**
- **L = 10^{27} cm² s⁻¹**

Ca-Ca

- **# events/25 MeV/c²**
- **Ψ/cont. = 9.7**
- **L = 2.5 \times 10^{29} cm² s⁻¹**

Ca-Ca

- **# \textit{J/Ψ}**
 - Pb-Pb: 2.2 \times 10^5
 - Ca-Ca: \textbf{9.7}

S/B

- Pb-Pb: 1.0
- Ca-Ca: 9.7

ALICE: ~2K events with μs

May 19, 2001

Pablo Yepes, Rice U
Upsilon in Pb-Pb

1 month: 22000 Υ and 7500 Υ' detected in the barrel

L = 10^{27} cm$^{-2}$ s$^{-1}$

Upsilon/cont. = 1.6

Total

Decay-Decay

Decay-b

b-b

Decay-c

c-c

Opposite-sign di-muon Invariant Mass (GeV/c2)

Background contributions

Combinatorial background subtracted after reconstruction

Events/25 MeV/c2

May 19, 2001

Pablo Yepes, Rice U
Upsilon in Ca-Ca

L = 2.5 10^{29} cm$^{-2}$s$^{-1}$

Upsilon/cont. = 9.4

- 1 month:
 - 340000 Υ
 - 115000 Υ'
 - Only barrel used.
May 19, 2001

Upsilon' / Upsilon ratio as a Thermometer
(Ramona Vogt)
Quarkonia Reference

- At SPS, J/Ψ is compared to Drell-Yan.
- At LHC Drell-Yan contribution is negligible.
- Z^0 proposed as reference to Υ production.
 - $\Delta M_Z > M_\Upsilon$
 - Different production mechanisms:
 - Z_0: antiquark-quark, quark-gluon and antiquark-gluon.
 - Υ: gluon-gluon.
- Cross check di-muon reconstruction algorithm.
Jet Quenching

- Large p_T quarks affected by hot hadronic media
- Jets at RHIC buried in low p_T background
- Look at particle p_T spectrum
Jets at LHC are Easy for High Multiplicity PbPb

Jet quenching

- monojet/dijet enhancement
- \(\text{jet} - Z^0 \rightarrow \mu\mu \text{ or } \text{jet} - \gamma \)

\[dN_{\text{ch}}/dy = 8000 \]

Jet Finding

- \(100 \text{ GeV } E_T \)
- \(\varepsilon \approx 100\% \)
- \(\sigma(E_T)/E_T = 11.6\% \)

\[\text{Pt}(Z) = \text{Et(Jet)} = 100 \text{ GeV} \]
Balancing Photons and Jets

- $E_T^{\text{jet}} \gamma > 120$ GeV in the barrel
- 1 month:
 - ▲ 900 events for Pb-Pb
 - ▲ 10^4 events for Ca-Ca

2 weeks at
$L = 10^{27}$ cm$^{-2}$s$^{-1}$

2 weeks at

$\gamma/\pi^0 - E_T^{\text{Jet}}$ (GeV)
Ultra Peripheral Collisions
(Coherent Interactions)

A \rightarrow \gamma \text{ or } P \rightarrow \gamma \text{ or } P \rightarrow A

- Low p_T
- Low Energy
 - ▲ CERN SPS
 - ▲ RHIC
 - ▲ CERN LHC

$p_T < 1/R \approx 50$ MeV
$E_{CM}^{Max} < \sqrt{s}/R$
- $E_{CM}^{Max} = 0.5$ GeV
- $E_{CM}^{Max} = 6$ GeV • Detected
- $E_{CM}^{Max} = 160$ GeV
STAR Ultra-Peripheral Event
(DNP 2000)
\[\text{AuAu} \rightarrow \gamma P \ (\gamma \text{Au}) \rightarrow \rho \rightarrow \pi \pi \]
Trigger: Low multiplicity and zero energy at Zero Degree Calorimeter (ZDC)
γγ Physics

- Mainly studied at e^+e^- colliders. Typically $\pi^0 < m_{\gamma\gamma} < \eta_c$. σ_{tot} up to 70 GeV by LEP.

- Non perturbative QED, coupling Z^2.

- **New Physics:**
 - ▲ Standard Model H production marginal for HI
 - ▲ Any exotic particle coupling to $\gamma\gamma$.
 - ▲ Supersymmetric Higgs for some areas of parameters space.

e^+e^- Cross Sections

<table>
<thead>
<tr>
<th>E_{thr} (GeV)</th>
<th>σ (Pb+Pb) (barn)</th>
<th>σ (Ca+Ca) (barn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1,500</td>
<td>5.5</td>
</tr>
<tr>
<td>1.0</td>
<td>500</td>
<td>1.8</td>
</tr>
<tr>
<td>5.0</td>
<td>30</td>
<td>0.1</td>
</tr>
</tbody>
</table>

May 19, 2001

Pablo Yepes, Rice U
Ultra-Peripheral Collisions

\[\gamma \gamma \text{ Cross Sections} \]

Meson or lepton/quark pair

\[\sigma_{AA}(M) \text{ (barn)} \]

\[\sigma_{AA}(M) \text{ (barn/GeV)} \]

\[\text{events/sec} \]

\[\text{events/year} \]

May 19, 2001

Pablo Yepes, Rice U
Light quark: Difficult at CMS because of low p_T, challenge for triggering, unless a multiplicity trigger is used.

<table>
<thead>
<tr>
<th>State</th>
<th>Mass, MeV</th>
<th>$\Gamma_{\gamma\gamma}$, keV</th>
<th>$\sigma(AA \to AA + X)$, PbPb</th>
<th>$\sigma(AA \to AA + X)$, CaCa</th>
<th>Events for 10^6 sec, PbPb</th>
<th>Events for 10^6 sec, CaCa</th>
</tr>
</thead>
<tbody>
<tr>
<td>η'</td>
<td>958</td>
<td>4.2</td>
<td>22 mb</td>
<td>125 μb</td>
<td>2.2×10^3</td>
<td>5.0×10^3</td>
</tr>
<tr>
<td>η_c</td>
<td>2981</td>
<td>7.5</td>
<td>590 μb</td>
<td>3.8 μb</td>
<td>5.9×10^4</td>
<td>1.5×10^7</td>
</tr>
<tr>
<td>χ_{c0}</td>
<td>3415</td>
<td>3.3</td>
<td>160 μb</td>
<td>1.0 μb</td>
<td>1.6×10^4</td>
<td>4.0×10^6</td>
</tr>
<tr>
<td>χ_{c1}</td>
<td>3556</td>
<td>0.8</td>
<td>160 μb</td>
<td>1.0 μb</td>
<td>1.6×10^4</td>
<td>4.0×10^6</td>
</tr>
<tr>
<td>$\gamma\gamma \to X$</td>
<td>2950</td>
<td>–</td>
<td>1.4 mb</td>
<td>9.0 μb</td>
<td>1.4×10^5</td>
<td>3.6×10^7</td>
</tr>
<tr>
<td>η_b</td>
<td>9366</td>
<td>0.43</td>
<td>370 nb</td>
<td>3.0 nb</td>
<td>37</td>
<td>12000</td>
</tr>
<tr>
<td>χ_{b0}</td>
<td>9860</td>
<td>2.5×10^{-2}</td>
<td>18 nb</td>
<td>0.14 nb</td>
<td>2</td>
<td>560</td>
</tr>
<tr>
<td>χ_{b1}</td>
<td>9913</td>
<td>6.7×10^{-3}</td>
<td>23 nb</td>
<td>0.19 nb</td>
<td>2</td>
<td>760</td>
</tr>
<tr>
<td>$\gamma\gamma \to X$</td>
<td>9400</td>
<td>–</td>
<td>140 μb</td>
<td>1.0 μb</td>
<td>1.4×10^4</td>
<td>4.0×10^6</td>
</tr>
</tbody>
</table>

Heavy quark spectroscopy. Very large numbers expected.
Photon Nucleus (γA)

- γp studied in HERA: $W_{\gamma p} < 200$ GeV
- γA at LHC: $W_{\gamma p} < 900$ GeV
- Vector meson production: $\gamma p (A) \rightarrow V p (A)$, $V=\rho, \omega, \phi, J/\Psi$
 - Very large rates, for example $>10^4$ Hz ϕ in Ca-Ca
 - Interface QCD and hadronic physics
 - LHC will be a meson factory. Competitive with other meson factories like ϕ factory at Frascatti (CP, QM tests, etc).
 - Can CMS trigger on these events. Clean events with only a few tracks.
Conclusions

- CMS is provides unique tools to study Heavy Ion Collisions at LHC.
- Some physics topics:
 - Quarkonium production: \(\Upsilon \) and J/\(\Psi \) families.
 - Jet quenching.
 - Ultra-Peripheral collisions.
Addendum: Tracking

- Developed for \(dN^\text{ch}/dy = 8000 \) and \(dN^0/\text{dy} = 4000 \).
- Track only particles with tracks in \(\mu \) detector.
- Use \(\mu \)-chambers tracks as seeds.
- Use only tracking detector providing 3D space points.

Detector Pitch \(\mu \)m

- MSGC 200
- MSGC 240
- Silicon 147

Occupancy (%)

Radius of MSGC layer (cm)
Interference

- **Nuclei can emit or scatter** pair
 - two indistinguishable possibilities

- **Amplitudes add**
 - Vector meson has negative parity
 - $\sigma \sim |A_1 - A_2 e^{ip\cdot b}|^2$
 - Destructive interference when $p_T << 1/b$