Graphene Quantum Electronics:
$p-n$ Junctions and Atomic Switches
Acknowledgement

Graduate Students

Feng Miao
Wenzhong Bao
Gang Liu
Jairo Velasco
Hang Zhang

Discussion With
Shan-Wan Tsai, Antonio Castro-Neto, Michael Fogler, Gil Refael, Dmitri Abanin, Chandra Varma, Leonid Pryadko, Dmitri Novikov, Alex Bratkosvki
0D, 1D, 2D and 3D Carbon

From Novoselov’s presentation at IWCNM, Kirchberg, 2007

Images taken from scifun.ac.uk
Two-Dimensional Crystal

- Honeycomb lattice, two sub-lattices
- Unique Dispersion Relations: massless Dirac Fermions
- First experimental isolation by Geim’s group in 2004

- New model system for condensed matter research
 - Veselago lensing, Klein tunneling, Spin transport, Supercurrent transistor…

- Surface 2DEG with tunable charge density and type
 - Optical, STM and mechanical measurements
 - Easily coupled to special electrodes (superconductors, ferromagnets)

Applications

- **Post-silicon electronic material**
 - With advantages of carbon nanotubes
 - high current density (~ mA/µm width)
 - high mobility (~10,000 cm²/Vs in as-prepared samples)

- **2D →** compatible with lithographic techniques, e.g. nanoribbon FET

- Potential for large scale synthesis

- Transparent electrodes for solar cells, LCD, etc

- Robust, non-volatile, atomic switches
 (Bockrath+Lau+Bruck group, see also Echtermeyer *et al.*, cond/mat 2008)

- Chemical and biological sensors

- Electronics, Spintronics, and Valley-tronics
 Experiments: van Wees group, Kawakami group, Fuhrer group
 Theories: Beenakker and co.

Ultra-sensitive gas sensors
Extraction of Single- and Bi-Layer Graphene

- Mechanical exfoliation -- rub natural graphite flakes onto SiO$_2$ substrate
- Identify the number of layers by
 - Raman spectroscopy
 - Transport measurement
 - Color contrast in optical microscope
- AFM images reveal mesoscopic features
Device Fabrication

Two steps of E-beam lithography
- Alignment Marks
- Electrodes (3-10 nm Ti or Pd + 70 nm Al or Au)

Bi-layer graphene device

Single-layer graphene device

Back gate controls charge density and type.
Coherent Charge Transport in Graphene

Graphene Coupled to Normal Electrodes at 260mK.

• Periodic conductance oscillation in both gate voltage and bias.

• Graphene electron resonator -- interference of multiply-reflected electron and hole waves between partially transmitting electrodes.

Outline

- Introduction
- Graphene p-n junctions
- Graphene Atomic Switches
Graphene \textit{p-n} Junctions

- Unique advantage: local control of charge density and \textit{type}

- Graphene \textit{p-n} junctions with top gate(s):
 - allow \textit{in situ} tuning of junction polarity and dopant levels

- Novel Phenomena and Applications
 - Veselago lensing (optics-like focusing of electron rays)
 - Klein tunneling (perfect transmission of relativistic particles across high barrier)
 - recent evidence by Kim’s group, Goldhaber-Gordon’s group, & Savchenko’s group.
 - Band gap engineering of bi-layer graphene
 - Particle collimation
 - Valley polarization

Klein Tunneling

Relativistic charged particles at normal incidence has perfect transmission across a high barrier ($V_0 \sim 2 mc^2$).

- Thought to be realizable at the edge of blackholes
- Graphene: electrons in conduction band \rightarrow holes in valence band
- Transmission probability depends on incidence angle

Graphene $p-n$ Junctions

- **Challenge**: deposition of top gate tends to dope or damage the atomic layer
- **Innovation**: Suspended, contactless top gate
 - Gentle process
 - Graphene can be annealed to improve mobility and contact
Conductance of \textit{p-n-p} Junctions

- Dirac point of the “bare” region
- Dirac point of the top gated region

\begin{itemize}
\item Individual control of charge density and type of different regions
\end{itemize}

Liu, Velasco Jr. and Lau, APL (2008);
see also Gorbachev et al, Nano Letter (2008).
Evidence for Klein Tunneling?

- Conductance oscillation with top gate voltages in \textit{pnp} regions

- Fabry-Perot interference of charges reflecting between 2 \textit{p-n} interfaces.

- $R_{\text{pnp}} > R_{\text{pp}'}$
- R_{pnp} increases with B
- Evidence for particle collimation effect due to \textit{pnp} junctions

Young and Kim, arXiv (2008; Shytov, Levitov et al, arxiv (2008)).
Half-integer Quantum Hall Effect

Semiconductors

Landau Levels

\[E_N = \pm \frac{eB}{m} \left(N + \frac{1}{2} \right) \]

Graphene

\[E_N = \pm v_F \sqrt{2e\hbar BN} \]

\[\sigma_{xy} = \pm \frac{4e^2}{h} \left(N + \frac{1}{2} \right) = \pm 2, \pm 6, \pm 10, \ldots \frac{e^2}{h} \]

Half Integer Quantum Hall Effect

Hall conductivity of single layer graphene quantized at half-integral values of $4e^2/h$ at high field.

Measurement performed at $B=8T$ and $T=260mK$
Quantum Hall States in graphene $p-n$ Junctions

- At high magnetic fields, quantum Hall plateau at fractional values of e^2/h observed
- Edge state equilibration, full mixing of propagation modes at interface

$$G = \frac{e^2}{h} \min(|v_1|,|v_2|)$$

$$G = \frac{e^2}{h} \frac{|v_1||v_2|}{|v_1| + |v_2|}$$

2 resistors in series

Quantum Hall States in graphene p-n-p Junctions

- 2 interfaces in p-n-p junctions
- Full and partial edge state equilibration

$$G = \frac{e^2}{h} \min(|v_1|, |v_2|)$$

$|v_2| \leq |v_1|$

$|v_2| > |v_1|$

Full Equilibration
$$G = \frac{e^2}{h} \frac{|v_1||v_2|}{2|v_1| - |v_2|}$$

Partial Equilibration
$$G = \frac{e^2}{h} \frac{|v_1||v_2|}{2|v_1| + |v_2|}$$

2e^2/h plateau sensitive to disorder, not observed

Ozyilmaz et al 2007
Quantum Hall States in graphene $p-n-p$ Junctions

- Quantum Hall plateaus at fractional values observed
- Edge state equilibration, full mixing of propagation modes at interface

Observation of $2e^2/h$ plateau → very clean junctions

Plateau sensitive to disorder
Ongoing Work

- Effect of ballistic/diffusive transport
- Klein Tunneling
- Junction shape
- Veselago Lensing
 (requires extremely clean devices → suspended graphene + suspended gate?)
- Supercurrent in p-n junctions
- Spin transport in p-n junctions

Outline

- Introduction
- Graphene p-n junctions
- Graphene Atomic Switches

- Brian Standley, Marc Bockrath (Applied Physics, Caltech)
- Wenzhong Bao, Hang Zhang, Chun Ning Lau (Physics, UCR)
- Jehoshua Bruck (Electrical Engineering, Caltech)
Device Fabrication

- Electrical breakdown to create nanoscale gaps
- Typical breakdown current density $\sim 1.6 \text{ mA/µm} \sim 1 \text{ µA/atom}$

Initial IV:

$T = 300K$
$P < 10^{-6} \text{ Torr}$
Two Types of Nanogaps

- **Tunnel gap**
 - $R_{\text{gap}} = 1 \text{M} \Omega - 10 \text{G} \Omega$
 - Possible platform for single molecule studies
 - Need to time-resolve resistance fluctuations

- **Contact gap**
 - $R_{\text{gap}} = 10 \text{k} \Omega - 500 \text{k} \Omega$
Bias Dependent Conductance Switching

- 6V pulse → “OFF”, 4V pulse → “ON”
- Reversible conductance switching by bias voltage

![Graph showing conductance switching](image)

- Conductance recovery
- Conductance decrease
- Low conductance
Device Operation

- **Robust**: Operates for thousands of cycles without degradation
- **Non-volatile**: Maintains last written state without external voltage for >24 hours, possibly indefinitely
Recovery Steps

- Device conductance recovers in steps
- Conductance histogram shows peaks at \(\sim 2e^2/h \)
- No gate dependence
- Reminiscent of mechanically controlled break junctions

Wait times follow a non-Poissonian distribution at lower voltages.

Wait times are strongly temperature dependent.
Switching Mechanism

“atomic drawbridges”

- Formation and breaking of atomic chains of carbon atoms that bridge across the nano-size gap

 Lang & Avouris PRL (1998)
Information Storage

- Rank coding: store information by the relative magnitudes of the memory elements
- Information capacity for an N-element cell is $\log_2 N!$
- Demonstrated storage of 1-bit based on rank coding using 2 graphene atomic switches
Graphene Atomic Switches

Ultimate miniaturization: atomic scale

Novel Materials
Graphene
- Extremely high mobility
- Superior thermal conductivity
- High current carrying capacity
- Planar, CMOS compatible

Novel Operating Principles
Atomic scale switches
- Non-Volatile
- Based on movement of atoms, not charges

Novel Architecture
Rank coding

On-going: device optimization, ultra-high density integration

November 2008
California Condensed Matter Theory Meeting
Other On-going Work and Collaborations

- Spin transport (with Kawakami at UCR)
- Thermopower (with Shi at UCR)
- Thermal conductivity (with Dames at UCR)
- STM (with Yeh at Caltech, LeRoy at U. Arizona)
- Photoconductivity (with Kalugin at New Mexico Tech)
- Raman spectroscopy (with Alex Balandin at EE, UCR)
- Graphene as an electronic material (with Bockrath at Caltech)