Conservation of energy and momentum

Owen Long, U. C. Riverside

Newton's 2nd law: \(\vec{F} = m \vec{a} \)

Can rewrite this as \(\vec{F} = m \frac{d \vec{v}}{dt} \)

if \(m \) is constant (mass of a ball)

then \(\vec{F} = \frac{d}{dt} (m \vec{v}) \)

but this is the momentum

\(\vec{P} = \frac{d \vec{P}}{dt} \)

If the net force is zero, \(\vec{P} \)
does not change in time (it's a constant).

Newton's 3rd law:

\(\vec{F}_{A \text{ on } B} = - \vec{F}_{B \text{ on } A} \)
Apply Newtont's 3rd law to two hockey pucks that collide.

Before collision:

After collision:

We know $\vec{P}_{\text{total, i}} = \vec{P}_{\text{total, f}}$.

How do we know this?
N's 3rd: \[\vec{F}_A \text{ on } B = -\vec{F}_B \text{ on } A \]

N's 2nd: \[\frac{d}{dt} \vec{P}_B = - \frac{d}{dt} \vec{P}_A \]

\[\frac{d}{dt} (\vec{P}_B + \vec{P}_A) = 0 \]

\[\frac{d}{dt} (\vec{P}_{\text{total}}) = 0 \]

The **total** momentum does not change in time when the net force on a closed system is zero.

Momentum is **conserved** in the collision.
Two kinds of collisions

(1) **Elastic**: total momentum \vec{P}_{total} and total kinetic energy ($K = \frac{1}{2}mv^2$) conserved (same before & after collision)

Example: Billiard balls

(2) **Inelastic**: only total momentum conserved.

Example: two chunks of clay that hit and stick together.

Elastic
- Billiard balls, air hockey pucks

Inelastic
- chunks of clay, car wreck
Conservation of energy

There are three kinds of energy relevant for this discussion.

1) Potential energy (gravitational)
 \[U = mgh \]

2) Kinetic energy (from motion)
 \[K = \frac{1}{2}mv^2 \]

3) Heat (thermal energy)
 energy lost to friction, for example.

In a closed system, the sum of all three kinds of energy is a constant (does not vary in time). No energy is lost or created.

You can convert one type of energy to another.
Bouncing ball example

ball initially at rest at height h.

$E_{\text{total}} = mgh = U$

(all energy is potential energy)

Let go of ball. Just before it hits the ground, the energy is all kinetic.

$E_{\text{total}} = \frac{1}{2}mv^2 = K$

Since energy is conserved, we can set this equal to mgh.

$E_{\text{total}, t_2} = E_{\text{total}, t_2}$

$mgh = \frac{1}{2}mv_2^2$

$v_2 = \sqrt{2gh}$
If the collision with the earth is elastic, the total kinetic energy after the collision is the same as just before it:

\[k_{\text{before}} = k_{\text{after}} \]
\[\frac{1}{2} m v_1^2 = \frac{1}{2} m v_2^2 \]

As the ball rises, it is being slowed down by the gravitational force. \((F_y = -mg)\)

When it reaches its peak height, all of the kinetic energy at \(t_3\) is converted back into potential energy.

If the collision were truly elastic, the ball will return to its original height \(h_2\).

If the collision is inelastic, some energy is converted into heat and \(h_y < h_2\).
Question: How can momentum be conserved when the ball hits the earth!?
Seems like \vec{p}_{total} completely changes direction!

\[\begin{align*} \downarrow & \vec{p}_z \\ \downarrow & \vec{p}_z \end{align*} \]

What's really going on is that the ball is falling down and the earth (the entire planet!) is falling up!

Newton's 3rd law: \[\vec{F}_{\text{ball on E}} = -\vec{F}_{\text{E on ball}} \]
\[F_{\text{E on ball}} = mg = F_{\text{ball on E}} \]

For a 1 kg ball, $F = 9.8$ N

The acceleration of the earth is

\[a_e = \frac{F}{M} = \frac{9.8 \text{ N}}{5.97 \times 10^{24} \text{ kg}} = 1.6 \times 10^{-24} \text{ m/s}^2 \]

(tiny!)
If you drop the 1 kg ball from 3 m, right before the ball hits the ground, the earth has moved a tiny bit up toward the ball.

By how much?

\[y_E = \frac{1}{2} a_E t^2 \]

Time for ball to fall

\[h = \frac{1}{2} g t^2 \Rightarrow t^2 = \frac{2h}{g} \]

\[y_E = \frac{1}{2} \left(1.6 \times 10^{-24} \text{ m/s}^2 \right) \left(\frac{2 \cdot 3 \text{ m}}{9.8 \text{ m/s}^2} \right) \]

\[y_E = 4.9 \times 10^{-25} \text{ m}! \]

Size of an atom is ~10^{-10} m

...a nucleus is ~10^{-15} m

This is ten billion times smaller than a nucleus!

Momentum is conserved. It just doesn't look that way...
Compare: two balls of equal mass and equal and opposite momenta collide head-on

Before: \(t_1 \)

\[\bigcirc \rightarrow \vec{p} \leftarrow \vec{p} \]

Total \(\vec{p} \) is zero

After: \(t_2 \)

\[\vec{p} = ma \]

Now, a very heavy ball and a very light ball with equal and opposite momenta

\[\bigcirc \rightarrow \vec{p} \leftarrow \vec{p} \]

\[p_L = m v_L \quad \text{and} \quad p_H = M v_H \]

If \(p_L = p_H \), \(m v_L = M v_H \)

\[v_H = v_L \frac{m}{M} \]

\(v_H \) very small because \(M \) is very large!
Bouncing basket ball
and tennis ball

drop a tennis ball resting on a
basket ball and see what
happens!

\[h \]

\[t_1 \]

just before
bounce

\[t_2 \]

just after
Basket ball
bounce

\[t_3 \]

\[\vec{P}_B \]

\[\vec{P}_B \]

\[\vec{P}_T \]

\[\vec{P}_T \]

\[t_4 \]

just after
Basket ball
Hits
tennis ball

\[P_{t4} > P_{t3} \]
Can you qualitatively explain why the tennis ball goes much higher than its original height using:
- conservation of momentum
- "" energy?

Another example:
5 steel balls hanging in a frame.

When they are in this position, the net force on each ball is zero (it's not accelerating).

The collisions between the steel balls are elastic: total momentum and total kinetic energy are conserved.

First, consider just two balls...
Let one swing down and hit the second one, which is at rest.

\[\text{just before collision} \]

1. **Momentum conservation**:
 \[MV_A = MV_A' + MV_B' \]

2. **Kinetic energy conservation**:
 \[\frac{1}{2} MV_A^2 = \frac{1}{2} MV_A'^2 + \frac{1}{2} MV_B'^2 \]

1. \[V_A = V_A' + V_B' \]

2. \[V_A^2 = V_A'^2 + V_B'^2 \]

\[(V_A' + V_B')^2 = V_A'^2 + V_B'^2 \]
\[V_A'^2 + V_B'^2 + 2V_A'V_B' = V_A'^2 + V_B'^2 \]
\[2V_A'V_B' = 0 \]
\[V_A' \text{ must be zero} \Rightarrow V_B' = V_A \]
When you swing 3 balls, 3 come up on the other side.

or 2 and 2
or 1 and 1

before

after
Pendulum with two unequal masses

t_1: let go of m

t_2: just before first collision

t_3: just after collision

$P_{m1} - P_{m3} = P_{m2}$

$h_4 < h_1$
t_5: just before 2nd collision

t_6: just after 2nd collision

$P_{m6} = -P_{m2}$

Can you describe this using conservation of energy and momentum?

t_7: light mass returns to original height.